Basic Mathematics

Brackets

R. Horan & M. Lavelle

The aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence at simplifying brackets.

Copyright © 2001 rhoran@plymouth.ac.uk, mlavelle@plymouth.ac.uk

Last Revision Date: June 8, 2001 Version 1.0

Table of Contents

- 1. Brackets (Introduction)
- 2. Distributive Rule
- 3. FOIL
- 4. Quiz on Brackets
 Solutions to Exercises
 Solutions to Quizzes

1. Brackets (Introduction)

Quantities are enclosed within brackets to indicate that they are to be treated as a single entity. If we wish to subtract, say, 3a - 2b from 4a - 5b then we do this as follows.

Example 1

(a)
$$(4a-5b)-(3a-2b) = 4a-5b-3a-(-2b)$$

= $4a-5b-3a+2b$
= $4a-3a-5b+2b$
= $a-3b$.

and similarly

(b)
$$(7x + 5y) - (2x - 3y) = 7x + 5y - 2x - (-3y)$$

= $7x + 5y - 2x + 3y$
= $7x - 2x + 5y + 3y$
= $5x + 8y$.

When there is more than one bracket it is usually necessary to begin with the inside bracket and work outwards.

Example 2

Simplify the following expressions by removing the brackets.

(a)
$$3a - c + (5a - 2b - [3a - c + 2b]),$$

(b)
$$-{3y - (2x - 3y) + (3x - 2y)} + 2x$$
.

Solution

(a) We have

$$3a - c + (5a - 2b - [3a - c + 2b]) = 3a - c + (5a - 2b - 3a + c - 2b)$$

$$= 3a - c + (2a - 4b + c)$$

$$= 3a - c + 2a - 4b + c$$

$$= 3a + 2a - 4b - c + c$$

= 5a - 4b.

(b) Similarly we have

$$\begin{split} -\{3y-(2x-3y)+(3x-2y)\}+2x &= -\{3y-2x+3y+3x-2y\}+2x\\ &= -\{3y+3y-2y+3x-2x\}+2x\\ &= -\{4y+x\}+2x\\ &= -4y-x+2x\\ &= x-4y\,. \end{split}$$

EXERCISE 1. Remove the brackets from each of the following expressions and simplify as far as possible. (Click on green letters for solutions.)

(a)
$$x - (y - z) + x + (y - z) - (z + x)$$
,
(b) $2x - (5y + [3z - x]) - (5x - [y + z])$,
(c) $(3/a) + b + (7/a) - 2b$,
(d) $a - (b + [c - \{a - b\}])$.

2. Distributive Rule

A quantity outside a bracket multiplies *each* of the terms inside the bracket. This is known as the **distributive rule**.

Example 3

- (a) 3(x-2y) = 3x 6y.
- (b) $2x(x-2y+z) = 2x^2 4xy + 2xz$.
- (c) 7y 4(2x 3) = 7y 8x + 12.

This is a relatively simple rule but, as in all mathematical arguments, a great deal of care must be taken to proceed correctly.

EXERCISE 2. Remove the brackets and simplify the following expressions. (Click on green letters for solution.)

- (a) $5x 7x^2 (2x)^2$ (b) $(3y)^2 + x^2 (2y)^2$
- (c) 3a + 2(a+1) (d) 5x 2x(x-1)
- (e) 3xy 2x(y-2) (f) 3a(a-4) a(a-2)

In the case of *two* brackets being multiplied together, to simplify the expression first choose *one* bracket as a single entity and multiply this into the other bracket.

Example 4 For each of the following expressions, multiply out the brackets and simplify as far as possible.

(a)
$$(x+5)(x+2)$$
, (b) $(3x-2)(2y+3)$.

Solution

(a)
$$(x+5)(x+2) = (x+5)x + (x+5)2$$

= $x(x+5) + 2(x+5)$
= $x^2 + 5x + 2x + 10$
= $x^2 + 7x + 10$.

(b)
$$(3x-2)(2y+3) = (3x-2)2y + (3x-2)3$$

= $2y(3x-2) + 3(3x-2)$
= $6xy - 4y + 9x - 6$.

Try this short quiz.

Quiz To which of the following does the expression

$$(2x-1)(x+4)$$

simplify?

(a)
$$2x^2 - 2x + 4$$
 (b) $2x^2 - 7x + 4$ (c) $2x^2 + 7x - 4$ (d) $2x^2 + 2x - 4$

3. FOIL

When it comes to expanding a bracket like (a+c)(x+y) there is a simple way to remember all of the terms. This is the word **FOIL**, and stands for

take products of the

First Outside Inside Last

This is illustrated in the following.

Example 5

$$(a+c)(x+y) = \stackrel{\mathbf{F}}{ax} + \stackrel{\mathbf{O}}{ay} + \stackrel{\mathbf{I}}{cx} + \stackrel{\mathbf{L}}{cy}$$
.

These terms are the products of the pairs highlighted below.

$$(a+c)(x+y), (a+c)(x+y), (a+c)(x+y), (a+c)(x+y).$$

Section 3: FOIL 10

There are two other brackets that are worth remembering. These are

$$(x+y)^2$$
, which is a *complete square*, and $(x+y)(x-y)$, which is a *difference of two squares*.

These are included in the following exercises.

EXERCISE 3. Remove the brackets from each of the following expressions using FOIL.

(a)
$$(x+y)^2$$
 (b) $(x+y)(x-y)$
 (c) $(x+4)(x+5)$ (d) $(y+1)(y+3)$
 (e) $(2y+1)(y-3)$ (f) $2(x-3)^2-3(x+1)^2$

Quiz To which of the following expressions does $9 - (x-3)^2$ simplify? (a) $-x^2$ (b) $6x - x^2$ (c) $18 - x^2$ (d) $6x + x^2$

4. Quiz on Brackets

Begin Quiz In each of the following, remove the brackets, simplify the expression and choose the solution from the options given.

1.
$$(a + 2m)(a - m)$$
(a) $a^2 - am - 2m^2$ (b) $a^2 + am - 2m^2$
(c) $a^2 + 2m^2 - am$ (d) $a^2 + 2am + 2m^2$

2.
$$(3b - a)(2a + 3b)$$
(a) $6b^2 + a^2 - 3ab$ (b) $9b^2 + 3ab - 2a^2$
(c) $9b^2 + 9ab - 3b^2$ (d) $6b^2 + 3ab - a^2$

3.
$$(2x + 1)^2 - (x + 3)^2$$
(a) $x^2 - 8$ (b) $x^2 - 2x - 8$ (c) $3x^2 - 8$ (d) $3x^2 - 2x - 8$
4.
$$3(x + 2)^2 - (x - 2)^2$$
(a) $2x^2 + 16x + 8$ (b) $2x^2 + 16$ (c) $4x^2 + 8x + 16$ (d) $4x^2 - 16$

End Quiz

Solutions to Exercises

Exercise 1(a)

$$x - (y - z) + x + (y - z) - (z + x)$$

$$= x - y + z + x + y - z - z - x$$

$$= x + x - x - y + y + z - z - z$$

$$= x - z.$$

Exercise 1(b)

$$2x - (5y + [3z - x]) - (5x - [y + z])$$

$$= 2x - (5y + 3z - x) - (5x - y - z)$$

$$= 2x - 5y - 3z + x - 5x + y + z$$

$$= 2x + x - 5x - 5y + y - 3z + z$$

$$= -2x - 4y - 2z.$$

Exercise 1(c)

$$\frac{3}{a} + b + \frac{7}{a} - 2b = \frac{3}{a} + \frac{7}{a} + b - 2b$$

$$= \frac{3+7}{a} - b$$

$$= \frac{10}{a} - b.$$

Exercise 1(d)

$$a - (b + [c - \{a - b\}]) = a - (b + [c - a + b])$$

$$= a - (b + c - a + b)$$

$$= a - (2b + c - a)$$

$$= a - 2b - c + a$$

$$= 2a - 2b - c.$$

Exercise 2(a)

First note that
$$(2x)^2 = (2x) \times (2x) = 4x^2$$
.

$$5x - 7x^{2} - (2x)^{2} = 5x - 7x^{2} - 4x^{2}$$
$$= 5x - 11x^{2}$$

Exercise 2(b)

$$(3y)^{2} + x^{2} - (2y)^{2} = 9y^{2} + x^{2} - 4y^{2}$$
$$= 9y^{2} - 4y^{2} + x^{2}$$
$$= 5y^{2} + x^{2}$$

18

Exercise 2(c)

$$3a + 2(a+1) = 3a + 2a + 2$$

= $5a + 2$

Exercise 2(d)

$$5x - 2x(x - 1) = 5x - 2x^{2} + 2x$$
$$= 7x - 2x^{2}$$

Exercise 2(e)

$$3xy - 2x(y-2) = 3xy - 2xy + 4x$$
$$= xy + 4x$$

Exercise 2(f)

$$3a(a-4) - a(a-2) = 3a^{2} - 12a - a^{2} + 2a$$
$$= 3a^{2} - a^{2} + 2a - 12a$$
$$= 2a^{2} - 10a$$

Exercise 3(a)

$$(x+y)^2 = (x+y)(x+y)$$

$$= x^2 + xy + yx + y^2 \text{ using FOIL}$$

$$= x^2 + 2xy + y^2$$

This is an **IMPORTANT** result and should be committed to memory. Here x is the *first* member of the the bracket and y is the *second*. The rule for the *square* of (x + y), i.e. $(x + y)^2$ is

$$x^2 + 2xy + y^2$$
 (square the first)+ (twice the product)+ (square the last)

Exercise 3(b)

Using FOIL again:

$$(x+y)(x-y) = x^2 - xy + yx - y^2$$

= $x^2 - y^2$

The form of the solution is the reason for the name difference of two squares. This is another important result and is worth committing to memory.

Exercise 3(c)

Using FOIL:

$$(x+4)(x+5) = x^2 + 5x + 4x + 20$$

= $x^2 + 9x + 20$

Exercise 3(d)

Using FOIL:

$$(y+1)(y+3) = y^2 + 3y + y + 3$$

= $y^2 + 4y + 3$

Exercise 3(e)

Using FOIL:

$$(2y+1)(y-3) = 2y^2 - 6y + y - 3$$
$$= 2y^2 - 5y - 3$$

Exercise 3(f)

This one is best done in parts. First we have

$$(x-3)^2 = x^2 - 6x + 9$$

and

$$(x+1)^2 = x^2 + 2x + 1$$

Thus

$$2(x-3)^{2} - 3(x+1)^{2} = 2(x^{2} - 6x + 9) - 3(x^{2} + 2x + 1)$$

$$= 2x^{2} - 12x + 18 - 3x^{2} - 6x - 3$$

$$= 2x^{2} - 3x^{2} - 12x - 6x + 18 - 3$$

$$= -x^{2} - 18x + 15$$

Solutions to Quizzes

Solution to Quiz:

$$(2x-1)(x+4) = (2x-1)x + (2x-1)4$$

$$= (2x^2 - x) + (8x - 4)$$

$$= 2x^2 - x + 8x - 4$$

$$= 2x^2 + 7x - 4$$

End Quiz

Solution to Quiz:

First note that $(x-3)^2 = x^2 - 6x + 9$, so

$$9 - (x - 3)^{2} = 9 - (x^{2} - 6x + 9)$$

$$= 9 - x^{2} + 6x - 9$$

$$= 9 - 9 - x^{2} + 6x$$

$$= -x^{2} + 6x = 6x - x^{2}$$

End Quiz